Removing toxic dyes from wastewater

Using specially-created nanofibre webs allows sunlight to decay the dyes safely, inexpensively and easily.

From health care to fracking and beyond, the ability to clean wastewater is vital in many fields. A team of Texas Tech University researchers working in advanced textiles has found a new way to remove toxic dye pollutants from wastewater, and their approach is safer, cheaper and easier than traditional methods. Their results are described in the upcoming cover article of the online journal Particle and Particle Systems Characterisation.

When fabrics are dyed, one of the final stages is the washing process, which helps to both set the dye in the fabric and remove any excess dye. The problem, however, is that after the dyeing process, the water is contaminated with leftover synthetic dyes and pigments—up to 200,000 tonne each year, by some estimates. Most of the dyes persist in the environment because of the inefficient, non-environmentally friendly conventional wastewater treatment processes and the fact that the dyes are designed to hold up to light, temperature and detergents—the very things that might be used to clean them.

Previously, the process of decaying the dye has used predominantly ultraviolet (UV) rays. In collaboration with researchers in the departments of chemical engineering and mechanical engineering, Seshadri Ramkumar, a professor in the Texas Tech Department of Environmental Toxicology, and doctoral candidate Lihua Lou have found a way to decay the dye by filtering the water through special nanofibre webs and exposing it to visible light—a process called “photodegradation”.

Ramkumar says there are several reasons using visible light is superior to using UV rays. “It is green, renewable..."
and environmentally friendly,” Ramkumar said. “Using visible light for photodegradation is not harmful, and it’s cost-effective and easy to operate. It makes the color removal in the industry economical.”

Ramkumar’s lab, the Nonwovens and Advanced Materials Laboratory, specialises in technical textiles. For this study, Lou added nanoparticles into a polymer solution, which was then electrospun into nanofibers. When the composite nanoparticle/ nanofiber webs were immersed in water containing a reddish dye called Rhodamine B (RhB), a chemical reaction occurred.

Researchers found that 80 per cent of RhB was degraded within six hours, and the remaining 20 per cent degraded slowly, completely disappearing after 49 days.

“The research focused on toxic dye removal because it is a persistent challenge for the textile industry,” Ramkumar noted.

Removing the color compounds is one of the most difficult tasks confronted by wastewater treatment plants because the dyes and pigments do not easily biodegrade. It’s also one of the most important tasks because of the threat these dyes can pose to the human ecosystem.

“Some dyes are highly mutagenic and toxic,” Lou explained. “RhB is a highly water-soluble chemical compound and widely used colorant in textiles. However, the wastewater with RhB may cause irritation to the skin, eyes and respiratory tracts of human beings and animals. Moreover, several health issues, such as neurotoxicity, carcinogenicity, reproductive toxicity and developmental toxicity, arise due to RhB wastewater.”

Based upon their success with RhB, the team’s next step is to try the same method with other types of synthetic and natural dyes, including methyl orange, methylene blue and reactive blue 19.

These results are important for several reasons. In addition to the nanoparticle/ nanofiber web’s success in removing the dye using visible light is its ability to do so without much secondary contamination.

“Our research is multidisciplinary and addresses an important problem for the global textile sector,” Ramkumar said. “After finishing the photodegradation process, the composite can be easily removed from water without leaving much harmful residue.”

Support for this research was provided by the Texas Tech Graduate School and the American Association of Textile Chemists and Colorists.

Ramkumar’s laboratory has been carrying out research with nanofibers and advanced fibrous materials for two decades. Early work included the creation of FiberTect, a nonwoven decontamination wipe capable of cleaning highly toxic chemical agents. More recent work has involved the development of environmentally friendly oil absorbent wipes and the incorporation of natural biocides in nanofibers to develop materials that can be used in wound healing.

For further information:
Seshadri Ramkumar, Professor, Nonwovens and Advanced Materials Laboratory, Department of Environmental Toxicology, College of Arts & Sciences, Texas Tech University, (806) 445-1925 or s.ramkumar@ttu.edu
Embee takes one step ahead in energy efficiency!

Embee Group’s new innovative dryer for rotary printing machine results in up to 60% energy saving.

Turkey, Africa and Latin America also,” Harsh Shah, MD and board member, Embee Group, reported to The Indian Textile Journal.

Unique features:
• All blowers (fans) are controlled with individual inverter drive system for maximum energy efficiency and minimum energy consumption
• Fast and optimum drying efficiency possible due to unique dryer design with three chamber dryer having 12 radiators, coupled with special airflow system for maximum heat efficiency and air circulation inside the chambers
• Different heating options available (gas/thermic oil/steam) as per customer’s choice
• Efficient temperature control with inverter system
• Specially designed nozzles for easy and fast cleaning and easy maintenance for maximum energy efficiency
• For longer life of the dryer, heat resistant paint used. Complete machine structure powder coated for longer durability of the machine

Embee’s vision is to be the most trusted global leader in innovative technological solutions, which are focused on higher efficiency and returns for sustainable growth.

Key benefits:
• Lowest energy consumption (up to 60% saving)
• Embee’s innovative radiators enable faster drying and low energy consumption
• High quality insulation used for minimum heat loss and higher energy efficiency
• Compact dryer with low volume leads to further low energy consumption. Low height design of the dryer is suitable for rising it higher to free the floor space
• Suitable for drying all types of fabrics

Embee, established in 1956 with a small beginning, has always believed in continuous innovation and research for the betterment of today’s and tomorrow’s commitments towards the textile industry. More than six decades of experience with continuous research, technical modernisation, co-operation of our technical team enables the company to offer unique textile machinery products of high quality and precision. Today, Embee provides a complete range of rotary printing solutions. Innovation has been not only core strength but also a tradition at Embee.

Embee Group’s vision is to be the most trusted global leader in innovative technological solutions, which are focused on higher efficiency and returns for sustainable growth of all the stakeholders.

“Embee’s all machines are aligned with its vision. While investing on capital machinery, capital cost and running cost should be equally considered. Embee has designed a dryer, which has lowest energy consumption in the market. As a result, Embee has received an overwhelming response and a lot of customers have replaced their current dryer of European rotary printing machine with Embee’s new innovative dryer. We have sold our dryer to not only in India but in Bangladesh,